《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》论文阅读(一)
背景简介 GCN的提出是为了处理非结构化数据(相对于image像素点而言)。CNN处理规则矩形的网格像素点已经十分成熟,其最大的特点就是利用卷积进行①参数共享②局部连接,如下图: 那么类比 ...
背景简介 GCN的提出是为了处理非结构化数据(相对于image像素点而言)。CNN处理规则矩形的网格像素点已经十分成熟,其最大的特点就是利用卷积进行①参数共享②局部连接,如下图: 那么类比 ...
首先,容我吐槽一下这篇论文的行文结构、图文匹配程度、真把我搞得晕头转向,好些点全靠我猜测推理作者想干嘛,😈 背景 我们知道传统的CNN针对的是image,是欧氏空间square grid,那么使 ...
GCN的定义 下面内容参考kipf博客,个人认为是告诉你从直觉上,我们怎么得到GCN图上的定义(而前面的大幅推导是从理论上一步一步来的,也就是说可以用来佐证我们的直觉) 我们的网络输入是\(\ma ...
DCNN 主要思想: 这是一篇基于空间域的图神经网络,聚合方式通过采样(hop)1~k 阶的邻居并同 self 使用 mean 的方式得到新的 feature-vector 作者将不同的 ...